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Abstract

Background: There is limited information on the distribution of virulence-associated genes (VAGs) in U.S.
Streptococcus suis isolates, resulting in little understanding of the pathogenic potential of these isolates. This lack
also reduces our understanding of the epidemiology associated with S. suis in the United States and thus affects
the efficiency of control and prevention strategies. In this study we applied whole genome sequencing (WGS)-
based approaches for the characterization of S. suis and identification of VAGs.

Results: Of 208 S. suis isolates classified as pathogenic, possibly opportunistic, and commensal pathotypes, the
genotype based on the classical VAGs (epf, mrp, and sly encoding the extracellular protein factor, muramidase-
release protein, and suilysin, respectively) was identified in 9% (epf+/mrp+/sly+) of the pathogenic pathotype. Using
the chi-square test and LASSO regression model, the VAGs ofs (encoding the serum opacity factor) and srtF
(encoding sortase F) were selected out of 71 published VAGs as having a significant association with pathotype,
and both genes were found in 95% of the pathogenic pathotype. The ofs+/srtF+ genotype was also present in 74%
of ‘pathogenic’ isolates from a separate validation set of isolates.
Pan-genome clustering resulted in the differentiation of a group of isolates from five swine production companies
into clusters corresponding to clonal complex (CC) and virulence-associated (VA) genotypes. The same CC-VA
genotype patterns were identified in multiple production companies, suggesting a lack of association between
production company, CC, or VA genotype.

Conclusions: The proposed ofs and srtF genes were stronger predictors for differentiating pathogenic and
commensal S. suis isolates compared to the classical VAGs in two sets of U.S. isolates. Pan-genome analysis in
combination with metadata (serotype, ST/CC, VA genotype) was illustrated to be a valuable subtyping tool to
describe the genetic diversity of S. suis.
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Background
The severe clinical presentation associated with Strepto-
coccus suis infection is of increasing concern in the U.S.
swine industry. The heterogeneity of S. suis can be de-
scribed by serotyping and multi-locus sequence typing
(MLST), and currently 29 true serotypes (1–19, 21, 23–
25, 27–31, and 1/2) and 1551 registered sequence type
(ST) profiles (as of December 2020) exist [1–5]. The nu-
merous S. suis serotypes and STs limit our attempts to
understand the epidemiology of the disease in an effort
to prevent and manage the various clinical manifesta-
tions. Further, S. suis has zoonotic potential, and many
of the effective antibiotics available for treatment are of
high or critically important status per U.S. Food and
Drug Administration’s Guidance for Industry #152 [6].
Also, serotype variations make it difficult to compare
isolates within and across geographically distinct pig
populations. The development of effective universal vac-
cines is hindered by the number of different virulent se-
rotypes and the lack of knowledge of serotype- or ST-
specific virulence markers and associated clinical disease.
Historically, systematic characterization of S. suis iso-

lates occurred more extensively in other countries com-
pared to the United States. For instance, serotypes 2, 3,
and 1/2 have been well-characterized in Canadian swine
populations [7–9]. In addition, virulence-associated
genes (VAGs) (epf, mrp, and sly) and STs indicative of
virulence potential were identified, mostly for serotype 2
[9–12]. Experimental studies illustrating the virulence
potential of Canadian serotype 2 strains (ST1, ST25, and
ST28) suggest the virulence potential of ST28 strains is
low at best in Canada, but a very different clinical pres-
entation was being observed on U.S. swine farms with
ST28 [11, 13, 14]. In the past 4 to 5 years, S. suis infec-
tions on U.S. swine farms appeared to be more persist-
ent and severe [15, 16]. However, whether this is a result
of new circulating strains, an increase in virulence, or
some other cause is not well understood, reinforcing the
importance of the characterization of S. suis to monitor
changes in strains within a herd.
U.S. swine practitioners utilize herd vaccination strat-

egies as a means of controlling S. suis disease. However,
selecting representative isolates and properly timing the
administration of vaccines still remain a challenge [17].
As a result of the diversity of S. suis, limited commercial
vaccines are available, and many practitioners develop
and maintain farm-specific autogenous vaccines. In
addition, clear criteria for identifying pathogenic strains
that cause primary disease are lacking, making isolate se-
lection for vaccines more difficult [18]. Isolates are com-
monly selected based on criteria such as serotype and
isolation from systemic tissues [19, 20]. However, due to
the diversity within and between serotypes, cross-
protection between, and even within, different serotypes

is difficult to attain [21–24]. Moreover, the presence of
virulence markers is critical for selecting isolates for au-
togenous vaccines. Over 100 putative and confirmed
virulence factors and markers (not crucial or critical for
virulence) for S. suis have been described in the litera-
ture, but few have been verified in experimental models
[18, 25]. These include Eurasian serotype 2 virulence
markers extracellular protein factor (epf gene),
muramidase-released protein (mrp gene), and suilysin
(sly gene), which have been investigated in STs 1, 25,
and 28 strains from North America [11, 26, 27].
The application of genomic approaches to identify as-

sociations between VAGs and disease manifestation can
lead to a better understanding of S. suis pathogenesis.
However, a comparative genomic study investigating the
current distribution of S. suis VAGs in U.S. isolates is
lacking. Recently, we reported associations of various
pathotypes with subtypes, including serotype and ST, of
S. suis [28]. In this current study, a genomic approach
was utilized to identify associations between VAGs and
pathotype of U.S. isolates while evaluating the likelihood
of classical Eurasian serotype 2 VAGs and newly pro-
posed VAGs to identify pathogenic strains. In addition,
pan-genome genetic relationships, along with their VAG
profiles (virulence-associated genotypes), were investi-
gated for isolates within and between swine production
companies. Finally, we applied the genomic approach for
identifying associations between VAGs and pathogen-
icity classification to a validation set of S. suis isolates to
determine whether our approach was robust enough to
identify pathogenic strains isolated from other swine
production companies.

Materials and methods
Source of isolates and collection of epidemiological data
A training set of 208 S. suis isolates were used in this
study. These isolates, previously described by Estrada
et al. (2019), were classified into three pathotypes
(pathogenic, possibly opportunistic, and commensal)
based on clinical information and site of isolation.
“Pathogenic” isolates were obtained from systemic tis-
sues such as the brain/meninges and heart. “Possibly op-
portunistic” isolates were predominantly from lung
samples from pigs without signs of neurological or sys-
temic disease. “Commensal” isolates were from laryngeal,
tonsil, or nasal samples retrieved from farms with no
current control methods for S. suis disease.
Furthermore, epidemiological data, such as swine pro-

duction company and site, were collected for the train-
ing set of isolates. The swine production companies
coded as A, D, E, K, and M are all large operations that
range in size from 70,000 to 340,000 sows and with
headquarters in the United States (A and D =MN, E =
MO, K = KS, and M = IL).
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VAG profiling
VAG profiling was performed on the training set using a
custom database of previously published VAGs of S. suis
(Additional file 1) [28]. Illumina sequencing reads were
mapped to reference DNA sequences (≥ 60% coverage
and ≥ 90% sequence identity) using the SRST2 (Short
Read Sequence Typing for Bacterial Pathogens) program
[29]. The construction of a presence and absence heat-
map (Euclidian distances and UPGMA clustering) was
performed with R software [30].

Statistical analysis
Associations between published S. suis VAGs and patho-
type, as previously defined by Estrada et al. [28], were in-
vestigated. Published VAGs present in a majority of
isolates (> 90%, 188/208) were removed. VAGs present
in < 50% of the pathogenic pathotype (< 70/139) were
also removed. Remaining VAGs were tested by chi-
square, comparing the three pathotypes and the status
(presence/absence) of individual genes. Genes lacking a
significant (chi-square p-value < 0.05) association with
pathotype were removed from the analysis. The
remaining genes were analyzed using the Least Absolute
Shrinkage and Selection Operator (LASSO) regression
model [31].
The LASSO regression model reduces coefficients to

zero and gradually eliminates genes that have no or low
correlation with the target variable. The LASSO model
was used to determine VAGs that may serve as the ‘best’
predictors of pathogenicity, in this case using the patho-
genic pathotype as the indicator of pathogenicity. The
analysis was performed using the R package glmnet and
the best lambda penalty value to determine the fewest
number of predictor genes [32]. Due to variation in the
number of predictor VAGs in each run, we ran 100 iter-
ations of the LASSO model to determine the most rele-
vant predictor genes. Predictor VAGs reported in all 100
iterations were considered relevant candidate VAGs.

Genome assembly and pan-genome analysis
Genome assembly was performed on Illumina sequen-
cing data from the training set [28]: SRA accession num-
bers SRR9123061-SRR9123268. Genome assemblies
were generated using MEGAHIT de-novo assembler (k-
mer range of 25–225) and polished using Pilon [33, 34].
QUAST was used to evaluate the genome assemblies
[35]. Only contigs that were 500 bp or larger were kept
for annotation by Prokka to predict coding sequences
[36]. The pan-genome was annotated using Roary with a
90% BLASTp identity cut-off to define clusters of genes
and allowing paralog clustering [37, 38]. The FastTree
program was used to generate an approximately-
maximum-likelihood phylogenetic tree based on the bin-
ary presence and absence of core and accessory genes.

Percent similarity was calculated as the percentage of
shared genes in the pan-genome.

Selection and whole genome sequencing of validation set
Thirty-two isolates obtained from a single swine produc-
tion company from 2017 to 2019 were classified as ei-
ther ‘pathogenic’ or of ‘unknown-pathogenicity’ based on
tissue source (Additional file 2). Isolates classified as
‘pathogenic’ were obtained from the brain (n = 19). The
isolates of ‘unknown-pathogenicity’ were isolated from
non-systemic tissues (no neurological signs) (n = 13).
The S. suis isolates were sequenced and the sequencing
reads were processed using a similar method as de-
scribed for the training set [28]. Isolates were confirmed
as S. suis if they possessed the S. suis-specific recombin-
ation/repair protein (recN) sequence (Streptococcus suis
05HAS68, Accession CP002007).

Serotype, MLST, VAG profile, and pan-genome analysis of
validation set
The serotyping of the validation set of S. suis isolates
was verified using a S. suis serotyping pipeline described
by Athey et al. (2016) to differentiate serotypes 2 and 1/
2 and serotypes 1 and 14 [39]. In-silico MLST analysis
was performed using the SRST2 program, and the ST al-
lele sequences and profiles obtained from the S. suis
MLST database [5]. Novel STs were further grouped
into major clonal complexes (CCs) as previously de-
scribed [28]. Data on presence or absence of the classical
VAGs (epf, mrp, and sly) was obtained for each of the 32
isolates as described above for the training set. Similar
genome assembly and pan-genome analysis as described
for the training set were performed on the 32 isolates.
The number of gene clusters identified for the training
and validation sets may differ due to gene duplication,
pseudogenes, gene acquisition/loss, and other genomic
variations, as well as differences in the number of ge-
nomes included in the pan-genome analysis [40, 41].

Results
VAG profiling
Distribution of the epf, mrp, and sly genes
In our previous study of 208 S. suis isolates (referred to
as the training set), 139, 47, and 22 were classified as the
pathogenic, possibly opportunistic, and commensal
pathotype, respectively [28]. The training set was also
characterized by determination of serotype, MLST, and
CC. In the current study, the distribution of the epf,
mrp, and sly genes was bioinformatically determined for
the 208 isolates in the training set. These classical VAGs
epf, mrp, and sly were identified in 20 (14.4%), 127
(91.4%), and 77 (55.4%) isolates of the pathogenic patho-
type, respectively (Table 1). The epf gene was predomin-
antly present in serotypes 1, 2, and 14 and CC1 isolates
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Table 1 Classical VAGs identified in the pathogenic pathotype of S. suis isolates (n = 139)

Subtypes Percentage of positive

epf
(n = 20, 14.4%)

mrp
(n = 127, 91.4%)

sly
(n = 77, 55.4%)

Serotypes 1 (n = 11) 35.0 5.5 14.3

1/2 (n = 54) 5.0 35.4 3.9

2 (n = 17) 30.0 11.0 7.8

3 (n = 18) 0.0 7.9 10.4

4 (n = 8) 0.0 3.1 5.2

5 (n = 13) 0.0 6.3 10.4

6 (n = 2) 0.0 0.0 0.0

7 (n = 23) 5.0 13.4 20.8

8 (n = 8) 0.0 3.1 5.2

9 (n = 8) 0.0 1.6 2.6

10 (n = 3) 0.0 0.0 0.0

14 (n = 5) 25.0 3.9 6.5

23 (n = 10) 0.0 6.3 10.4

24 (n = 1) 0.0 0.8 1.3

1or14a (n = 1) 0.0 0.0 1.3

NT (n = 11) 0.0 1.6 0.0

Multilocus Sequence Type CC1b ST1 (n = 17) 85.0 13.4 22.1

CC1 ST87 (n = 9) 0.0 3.1 5.2

CC28 ST25 (n = 2) 0.0 1.6 0.0

CC28 ST28 (n = 52) 10.0 33.1 3.9

CC28 ST29 (n = 2) 0.0 1.6 0.0

CC28 ST117 (n = 2) 0.0 1.6 0.0

CC28 ST961 (n = 10) 0.0 7.1 1.3

CC28 ST973 (n = 1) 0.0 0.8 0.0

CC94 ST94 (n = 18) 0.0 11.0 18.2

CC94 ST108 (n = 17) 0.0 11.0 18.2

CC94 ST119 (n = 2) 0.0 0.8 1.3

CC94 ST373 (n = 5) 0.0 3.1 5.2

CC94 ST839 (n = 1) 0.0 0.8 1.3

CC94 ST964 (n = 1) 0.0 0.8 1.3

CC94 ST977 (n = 9) 0.0 5.5 9.1

CC94 ST981 (n = 1) 0.0 0.8 1.3

CC104 ST225 (n = 3) 5.0 0.8 3.9

ST13 (n = 5) 0.0 0.0 6.5

ST949 (n = 1) 0.0 0.0 0.0

ST965 (n = 1) 0.0 0.0 0.0

ST967 (n = 1) 0.0 0.0 0.0

ST976 (n = 1) 0.0 0.0 0.0

ST979 (n = 1) 0.0 0.8 1.3

ST995 (n = 1) 0.0 0.0 0.0

NF (n = 4) 0.0 2.4 0.0
a Could not differentiate serotypes 1 and 14 by coagglutination, PCR, and WGS
b Clonal complexes (CCs) determined in our previous study [27]
NT = Unresolved serotype by coagglutination, PCR, and WGS
NF = ST could not be determined
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while mrp and sly were distributed among a diverse set
of subtypes. The epf, mrp, and sly genes were identified
in 0 (0%), 6 (27.3%), and 4 (18.2%) isolates of the com-
mensal pathotype, respectively (Table 2). We further in-
vestigated genotype combinations of the epf, mrp, and
sly genes and their distributions in STs 1, 25, and 28
(Table 2). The predominant genotype in the pathogenic
pathotype was epf−/mrp+/sly- (41.0%, 57/139) followed
by epf−/mrp+/sly+ (36.0%, 50/139). A majority of the
ST28 (94%) and both ST25 isolates in the training set
possessed the epf−/mrp+/sly- genotype. The epf+/mrp+/
sly+ genotype was identified in only 20 of the 139 iso-
lates classified as the pathogenic pathotype. All 17 ST1
isolates possessed the epf+/mrp+/sly+ genotype. In sum-
mary, a majority of isolates, even those of the pathogenic
pathotype, lacked the three classical VAGs, but all the
isolates containing the three VAGs were classified as
pathogenic or ST1.

Determining predictors of pathotype by VAG profiling
Given the limited distribution of classical VAGs (epf and
sly) among isolates in the pathogenic pathotype, the clas-
sical VAGs are not appropriate indicators of pathogen-
icity for non-serotype 2 S. suis isolates from the United
States. Thus, a total of 71 previously published S. suis
VAGs (including epf, mrp, and sly) were investigated for
the presence of alternative genes that may be indicators
of pathogenic strains. Thirty-two (45%) VAGs were
present in all genomes regardless of pathotype and were
clearly not indicators of the pathogenic pathotype
(Table 3 & Additional file 3). Five VAGs were absent in
all of the isolates in the commensal pathotype. SalK and
salR, which encode the SalK/SalR two-component signal
transduction system [42], were not detected in any of
the isolates despite mapping to different reference
sequences.

Clustering analysis was used to determine if relation-
ships between the presence of previously published
VAGs and pathotype existed. The analysis of 71 VAGs
identified three clusters (Cluster I-III), two of which as-
sociated with pathotype (Fig. 1 & Additional file 4).
Cluster I consisted of isolates of all three pathotypes.
Cluster II predominantly consisted of isolates from the
pathogenic pathotype and lacked isolates from the com-
mensal pathotype. Cluster III contained the majority of
isolates from the commensal pathotype (73%). Isolates in
the pathogenic cluster (Cluster II) were predominantly
characterized as serotype 1/2 CC28. Serotype 1/14 CC1
isolates formed a subcluster of Cluster I which lacked
isolates from the commensal pathotype. Clustering ana-
lysis also illustrated multiple candidate published VAGs
for discriminating between pathotypes, specifically VAGs
present in the two pathogenic clusters and absent in the
commensal cluster.
We then performed statistical analyses to test for asso-

ciations between VAGs and pathotype. Of the 71 pub-
lished VAGs detected in the genomes, 16 were tested by
chi-square and 14 were considered significant (chi-
square p < 0.05) (Table 3 & Additional file 5). The clas-
sical VAGs mrp and sly were considered significant by
chi-square. The 14 VAGs that were significant by chi-
square were further analyzed by the LASSO model. The
sly gene was in the top ten VAGs identified by LASSO,
but mrp was not [data not shown]. The LASSO model
identified four other candidate VAGs associated with the
pathogenic pathotype (Table 4). The VAGs ofs and srtF
were present in over 95% (≥ 132/139) of isolates in the
pathogenic pathotype and thus, the presence of both
genes was tested as predictors of the pathogenic patho-
type. Ninety-five percent (132/139) of the pathogenic
pathotype contained both genes while only 23% (5/22)
of the commensal pathotype contained both genes.

Table 2 Classical VAGs epf, mrp, and sly genotypes identified in the pathotypes of S. suis isolates (n = 208)

Virulence-associated gene
or genotype

No. possessing gene or
genotype (%)

Pathogenic
(n = 139)

Possibly
Opportunistic
(n = 47)

Commensal
(n = 22)

ST1
(n = 17)

ST25
(n = 2)

ST28
(n = 52)

epf 21 (10.1%) 20 1 0

mrp 165 (79.3%) 127 32 6

sly 99 (47.6%) 77 18 4

epf−/mrp+/sly- 73 (35.1%) 57 14 2 0 2 49

epf−/mrp+/sly+ 71 (34.1%) 50 17 4 0 0 1

epf−/mrp−/sly- 36 (17.3%) 5 15 16 0 0 0

epf+/mrp+/sly+ 21 (10.1%) 20 1 0 17 0 2

epf−/mrp−/sly+ 7 (3.4%) 7 0 0 0 0 0

epf+/mrp+/sly- 0 0 0 0 0 0 0

epf+/mrp−/sly+ 0 0 0 0 0 0 0

epf+/mrp−/sly- 0 0 0 0 0 0 0
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Table 3 Distribution of 71 VAGs for the pathotypes of S. suis isolates (n = 208)

VAG No. containing the VAG Pathogenic (n = 139) Possibly Opportunistic (n = 47) Commensal (n = 22)

adcRa 208 139 47 22

amylopullulanasea 208 139 47 22

ccpAa 208 139 47 22

cdda 208 139 47 22

ciaHa 208 139 47 22

dpra 208 139 47 22

enoa 208 139 47 22

fbpSa 208 139 47 22

feoBa 208 139 47 22

gdha 208 139 47 22

glnHa 208 139 47 22

gnda 208 139 47 22

gpmAa 208 139 47 22

guaAa 208 139 47 22

guaBa 208 139 47 22

htpSa 208 139 47 22

lgta 208 139 47 22

lppa 208 139 47 22

orf207a 208 139 47 22

pepXPa 208 139 47 22

permeasea 208 139 47 22

pgdAa 208 139 47 22

plr-gapAa 208 139 47 22

purAa 208 139 47 22

purDa 208 139 47 22

scrBa 208 139 47 22

scrRa 208 139 47 22

sodAa 208 139 47 22

srtAa 208 139 47 22

sspAa 208 139 47 22

troAa 208 139 47 22

vicR-covRa 208 139 47 22

arcA 207 139 46 22

ciaR 207 139 46 22

lmb 207 139 46 22

luxS 207 139 46 22

phospholipaseC 207 139 46 22

treR 207 139 46 22

ssnA 206 139 45 22

lspA 196 139 44 13

manN 196 139 43 14

zmpC 193 139 42 12

fur 190 136 41 13

gtfA 204 135 47 22
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Diversity of U.S. S. suis by pan-genome analysis
Relatedness of 208 S. suis isolates by pan-genome analysis
Pan-genome analysis of 208 S. suis genomes gener-
ated a pan-genome of 8373 gene clusters and illus-
trated multiple clusters that corresponded to the
five MLST CCs (CC1, CC28, CC94, CC104, and
CC750) (Fig. 2) [28]. Isolates from at least sixteen
swine production companies (A-P) (≥ 2 isolates
each) were identified in the data set, with A (n =
13), D (n = 16), E (n = 18), K (n = 21), and M (n = 16)
representing the five production companies with the
most isolates in this study (predominant production
companies). The most predominant CCs (CC1,
CC28, and CC94) were identified in multiple pro-
duction companies. CCs 1, 28, and 94 were identi-
fied in 12, 11, and 12 of the 16 production
companies, respectively.

Relatedness of isolates within the five predominant
production companies
The genetic relationships between pathogenic and pos-
sibly opportunistic isolates within a production company
were investigated using pan-genome analysis for each of
the five predominant production companies A, D, E, K,
and M (Fig. 3). None of the isolates from these produc-
tion companies were classified as the commensal patho-
type [28]. In addition, we explored associations between
pan-genome clusters and genotypes of the classical (epf,
mrp, and sly) and proposed pathogenic (ofs and srtF
genes) VAGs. The isolates demonstrated various geno-
types of classical VAGs, and a majority (96.4%) pos-
sessed the proposed ofs+/srtF+ genotype for predicting
pathogenic strains.
Due to the diversity of isolates within each production

company, we investigated pan-genome clusters and

Table 3 Distribution of 71 VAGs for the pathotypes of S. suis isolates (n = 208) (Continued)

VAG No. containing the VAG Pathogenic (n = 139) Possibly Opportunistic (n = 47) Commensal (n = 22)

dltAb 186 135 39 12

ofsb 176 135 34 7

sao 189 134 39 16

GBSSAG0907-homologueb 175 133 35 7

srtFb 168 132 31 5

srtF-sipFb 167 131 31 5

mrpb 165 127 32 6

srtF-sfp1b 155 120 31 4

hylAb 145 112 28 5

virAb 142 105 26 11

traGb 158 100 39 19

glnAb 138 83 34 21

endoDb 116 80 26 10

SMU61-homologueb 107 78 22 7

slyb 99 77 18 4

neuBbc 90 77 13 0

srtF-sfp2b 90 77 12 1

srtG 76 61 14 1

srtG-sgp2 76 61 14 1

srtG-sgp1 75 60 14 1

adhesinP 43 30 10 3

nadRc 25 25 0 0

rgg 33 21 7 5

revS 40 20 9 11

epf c 21 20 1 0

salKc 0 0 0 0

salRc 0 0 0 0
a Represents VAGs identified in all the isolates
b Represents VAGs tested by chi-square
c Represents lack of VAGs in the commensal pathotype
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genotypes for each predominant production company.
The isolates originating from production companies A,
E, and M were placed into two, one, and three clusters,
respectively, and multiple singletons each and demon-
strated an overall 83.1–99.9%, 89.3–100% and 85.3–
99.9% similarity, respectively. A majority of the isolates
originating from A and E (A = 54%, E = 72%), and many
from M (50%) possessed the classical VAG mrp but

lacked the epf and sly genes. The isolates originating
from production companies D and K were placed into
three clusters and multiple singletons each and demon-
strated an overall 89.4–100% and 86.6.-99.9% similarity,
respectively. Multiple isolates from D and K (D = 44%,
K = 48%) possessed mrp and sly but lacked the epf gene.
A few isolates from each production company (n = 1
from companies D, E, K, and M, n = 2 from company A)

Fig. 1 Virulence-associated gene (VAG) profiling of 208 S. suis isolates. Heatmap illustrating the presence and absence of 71 previously published
VAGs in 208 isolates. Isolates are annotated (right) by pathotype (pathogenic, possibly opportunistic, commensal). Clustering of the 208 S. suis
isolates by VAGs illustrated three clusters (Clusters I-III), two of which (Clusters II and III) suggest associations between VAGs and pathotype.
Serotype and clonal complex (CC) distributions in each of the three clades are also denoted
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possessed all three classical VAGs epf, mrp, and sly. A
majority of isolates in all five production companies
(A = 92.3%, D = 100%, E = 100%, K = 95.2%, M = 93.8%)
possessed the proposed ofs+/srtF+ genotype, indicating
the presence of both ofs and srtF genes are a better pre-
dictor of pathogenicity than the presence of the epf,
mrp, and sly genes.

Relatedness of commensal isolates
We further investigated the genetic relationships be-
tween the 22 isolates of the commensal pathotype.
An 82.6–99.9% similarity was observed, with isolates
forming two large clusters and multiple sub-clusters
(Fig. 4). Thirteen isolates lacked a CC, while one,
three, and five isolates were assigned to CC1, CC94,

Fig. 2 Relatedness of 208 S. suis isolates by pan-genome analysis. Genetic relationships between isolates are based on the presence and absence
of 8373 gene clusters among 208 S. suis genomes. The phylogenetic tree is colored-coded (branches) and labeled (right) by CC; multiple STs did
not form a CC or formed a CC without a primary founder. Isolates from at least sixteen swine production companies (A-P) (≥ 2 isolates each)
were identified in the data set. Misc. refers to miscellaneous production companies (single isolates each). Isolates belonging to the five
predominant production companies (A, D, E, K, and M) are color-coded by their respective production company. * strains in the commensal
pathotype (n = 22)

Table 4 LASSO results for the four candidate VAGs in the pathotypes of S. suis isolates (n = 208)

VAG(s) No.
containing
the VAG(s)

Pathogenic
(n = 139)

Possibly Opportunistic
(n = 47)

Commensal
(n = 22)

No. Proportiona No. Proportiona No. Proportiona

ofs 176 135 0.767 34 0.193 7 0.040

srtF 168 132 0.786 31 0.185 5 0.030

neuB 90 77 0.856 13 0.144 0 0.000

srtF-sfp2 90 77 0.856 12 0.133 1 0.011

ofs and srtF 168 132 0.786 31 0.185 5 0.030
a positive isolates in the pathotype divided by the number of isolates containing the VAG(s)
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and CC750, respectively. The CC1 and CC94 isolates
possessed more VAGs than the other commensal iso-
lates with all possessing mrp and sly, and both ofs
and srtF, while a majority of commensal isolates
(77.3%) lacked the classical and proposed pathogenic
VAGs.

Characterization of the validation set of S. suis isolates
A distinct validation set of 32 S. suis isolates was ob-
tained from a single production company to perform
pan-genome analysis and further test the novel proposed
pathogenic genotype (ofs+/srtF+). These isolates were
classified as either ‘pathogenic’ or of ‘unknown-patho-
genicity.’ The pan-genome consisted of 7078 gene clus-
ters among the 32 genomes, and these pan-genome
clusters associated with the ‘pathogenic’ and ‘unknown-

pathogenicity’ classifications, as well as with virulence-
associated genotypes (Fig. 5). Clusters c-f corresponded
to the ‘pathogenic’ classification. Only the isolates in
clusters e and f possessed the classical VAGs epf, mrp,
and sly. Moreover, all the isolates in these two clusters
possessed the proposed pathogenic ofs+/srtF+ genotype.
A majority of the isolates in cluster d (67%) possessed
the ofs+/srtF+ genotype.
Cluster a and singletons g-n corresponded to the ‘un-

known-pathogenicity’ classification (Fig. 5). A majority
(86%) of the isolates in cluster a possessed the classical
VAGs mrp and sly, but three isolates (43%) also pos-
sessed the proposed pathogenic genotype. A majority
(75%) of the singletons g-n lacked both the classical and
proposed VAGs. Two isolates possessed the proposed
pathogenic genotype. The diversity and lack of VAGs in

Fig. 3 Pan-genome analysis of isolates from the five predominant production companies. The predominant production companies are presented
as A, D, E, K, and M. Color-coding of isolate names by production company and color-coding of phylogenetic tree branches by CC follow the
same color schemes as Fig. 2. The percent similarity of isolates within a cluster is defined as the percentage of shared genes from a total of 8373
genes. The presence of the classical VAGs epf, mrp, and sly is represented in green and the proposed VAGs ofs and srtF in orange
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clusters g-n is similar to the diversity seen among the
commensal pathotype, suggesting these isolates are com-
mensal strains.

Discussion
In this study, 71 published S. suis VAGs (including the
classical VAGs epf, mrp, sly) were evaluated to identify
pathogenic isolates associated with systemic and neuro-
logical disease from the United States. Notably, VAGs
ofs and srtF demonstrated stronger associations with the
pathogenic pathotype than the other 69 VAGs, suggest-
ing novel published VAGs associated with pathogenicity.
A genotyping scheme consisting of these two genes
(ofs+/srtF+ genotype) identified pathogenic isolates in a
validation set of S. suis isolates, demonstrating its poten-
tial application for predicting pathogenicity in other
swine production companies. The genetic diversity of
isolates within and between swine production companies
was evaluated by pan-genome analysis, and important
associations were observed among pan-genome clusters,
CCs, and virulence-associated (VA) genotypes.
Muramidase-released protein has been associated with

enhanced survival of S. suis in human blood and an in-
crease in blood-brain barrier permeability in mice while
suilysin plays a role in the inflammatory response al-
though neither of which have been described as being
critical as virulence factors [43–48]. The epf gene was

identified in only 14% and the sly gene was identified in
55% of isolates in the pathogenic pathotype. The mrp
gene was identified in 91% of the pathogenic pathotype
and 27% of the commensal pathotype suggesting the
classical VAG mrp continues to be an adequate identifier
of pathogenic strains. The epf+/mrp+/sly+ genotype is
correlated with S. suis clinical disease caused by Euro-
pean and Asian ST1 strains belonging to serotypes 1, 2,
9, and 14 [27, 49, 50]. The ST1 isolates in the training
set had the epf+/mrp+/sly+ genotype, and the ST25 and
ST28 isolates had the epf−/mrp+/sly- genotype, confirm-
ing the use of the classical VAGs for identifying virulent
ST1 strains but the limited use for identifying ST25 and
ST28 strains in North America [11].
Various subtyping methods, including serotyping and

MSLT, have been used for evaluating the genetic diver-
sity of S. suis isolates and identifying patterns specific to
clinical isolates. Pulsed-field gel electrophoresis (PFGE)
has been used for evaluating the genetic diversity of S.
suis serotype 2, 1/2, 3, 7, and 9 strains [51, 52]. Although
PFGE has high discriminatory power, typing a large
number of isolates is time consuming and labor inten-
sive. Unique randomly amplified polymorphic DNA pat-
terns have been recovered from S. suis isolates from
diseased pigs and correlated with the production of viru-
lence markers [53, 54]. However, these analyses were
mainly focused on serotype 2 strains. Multiplex PCR

Fig. 4 Pan-genome analysis of the 22 commensal isolates. Color-coding of phylogenetic tree branches by CC follows the same color scheme as
Fig. 2. The presence of the classical VAGs epf, mrp, and sly is represented in green and the proposed VAGs ofs and srtF in orange

Estrada et al. Porcine Health Management            (2021) 7:22 Page 11 of 16



assays were developed for the differentiation of isolates
into serotypes and detection of multiple VAGs [55–57].
A limitation of multiplex PCR assays is the number of
targets that can successfully be tested in a single assay
[58]. In this study, we utilized pan-genome analysis in
conjunction with serotyping, MLST, and VAG profiling
as a subtyping tool for S. suis. Whole genome sequen-
cing (WGS)-based approaches, such as comparative gen-
ome hybridization, minimum core genome sequence
typing, pan-genome and Bayesian analysis of population
structure, and genome-wide association studies, have
been used in combination with phenotypic methods for
the identification and classification of S. suis strains into
groups of differing levels of virulence [21, 22, 59–62].
WGS-based approaches have multiple advantages to mo-
lecular subtyping techniques, such as the ability to
characterize the entire genome, a higher discriminatory
power capable of discriminating closely related strains,
the ability to perform in silico (via computer simulation)
analyses, and access to a vast number of bioinformatics
tools for the analysis of whole genomes [63, 64].
Novel published VAGs for the identification of patho-

genic S. suis isolates were selected using a chi-square
test and a LASSO regression model testing associations
between published VAGs and pathotype. As a result, the
two genes ofs and srtF were selected as the ‘best’ indica-
tors of pathogenicity for isolates in our study. The ofs
gene encodes a serum opacity factor and was associated
with virulence attenuation in an experimental pig model

[65]. The srtF gene encodes a class C sortase and is part
of the srtF pilus gene cluster composed of four genes,
srtF, sipF, sfp1, and sfp2 [66]. SrtF gene mutants of S.
suis serotype 2 ST1 strain P1/7 caused attenuation of
virulence in an intranasal caesarean-derived colostrum-
deprived (CDCD) pig model [67]. However, the presence
of the pilus gene cluster does not guarantee pilus protein
expression [11]. Our research identifies the genes as
markers for pathogenicity and not the expression of pro-
teins. The percentage of isolates containing the ofs+/
srtF+ genotype that were classified as pathogenic in-
creased from 79 to 96% (132/137) when excluding the
possibly opportunistic pathotype (isolates possibly asso-
ciated with respiratory disease) from the analysis. The
proposed pathogenic genotype for predicting pathogen-
icity was further tested in a validation set consisting of
32 S. suis isolates to evaluate the likelihood of these two
genes identifying pathogenic strains in other swine pro-
duction companies. The ofs+/srtF+ genotype was ob-
served in 73.7% (14/19) of the ‘pathogenic’ isolates,
together indicating a ≥ 74% probability that an isolate
will be classified as pathogenic given the proposed geno-
type. The proposed ofs+/srtF+ genotype, in complement
to the classical VAGs for ST1, identifies pathogenic
strains in the United States. A potential application of
this research is the development of a diagnostic PCR test
targeting these two proposed VAGs.
Nineteen of 139 isolates in the pathogenic pathotype

lacked the ofs+/srtF+ genotype suggesting the possibility

Fig. 5 Pan-genome analysis of the validation set of 32 S. suis isolates. Isolates are color coded by classification, ‘pathogenic’ (red) or ‘unknown-
pathogenicity’ (blue). The phylogenetic tree branches are colored-coded by CC. The percent similarity of isolates within a cluster is defined as the
percentage of shared genes from a total of 7078 genes. The presence of the classical VAGs epf, mrp, and sly is represented in green and the
proposed VAGs ofs and srtF in orange
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of misclassification of these isolates based on tissue
source (systemic versus non-systemic). In addition to
pathogen-specific traits, environmental and management
conditions and host traits contribute to the development
of S. suis disease. These factors include temperature
fluctuations, overcrowding, concurrent infections, and
host immunity and genetics [20, 68, 69]. The ofs+/srtF+
genotype was identified in five isolates in the commensal
pathotype but four of these isolates were characterized
as CC1 or CC94, which are generally pathogenic sub-
types [70, 71]. The five commensal isolates are present
in Cluster I (Fig. 1), which represents a cluster contain-
ing all three pathotypes, indicating these isolates share
similar VAGs with pathogenic isolates. Virulent strains
have been previously isolated from the nasal cavities and
tonsils of clinically healthy pigs, so characterization by
tissue source can be misleading [72, 73].
Pan-genome analysis in combination with metadata

(serotype, ST/CC, VA genotype) was used in this study
as a subtyping tool to describe the genetic diversity of S.
suis isolates within a production company and between
companies for epidemiological purposes. The differenti-
ation of S. suis may provide information on the origin of
isolates (geographical location, year, source, etc.) or aid
in the identification and tracking of strains over time
[74–76]. Isolates from the pathogenic pathotype in this
study formed distinct clusters with correlation to CC
and VA genotypes, which is consistent with previous
studies [54, 77]. The same CC-VA genotype patterns
were identified in multiple production companies, sug-
gesting a lack of association between production com-
pany, CC, or VA genotype. These observed patterns may
be widespread as opposed to originating from a common
source of infection as previously suggested [78–80]. Fur-
thermore, the high genetic similarity and identical CC
and VAG genotypes within a pan-genome cluster (such
as in cluster A in production company E) are indicative
of a clone, providing useful information for the identifi-
cation and tracking of clones over time [81–83]. Thus,
the use of WGS to complement metadata (e.g. epidemio-
logical, clinical and demographical data) provides a valu-
able tool for subtyping S. suis as part of epidemiological
studies [84, 85]. Further, pan-genome analysis of U.S. S.
suis isolates may be used to identify candidate VAGs not
yet identified or characterized.
The differentiation of S. suis isolates is also crucial for

the development of autogenous vaccines [86]. Different
strains have been recovered from diseased pigs from the
same herd and selecting the strain or strains associated
with disease is challenging [52, 87–89]. For the valid-
ation set, multiple CC-VA genotype patterns were found
among the ‘pathogenic’ clusters, indicating multiple
clones were present in this production company. This
diversity of isolates is supported by the identification of

five serotypes (1, 1/2, 2, 14, and 7) in the validation set,
all of which are generally pathogenic subtypes [24, 90,
91]. Despite the diversity of clinical strains in the same
herd, previous reports indicate a specific strain is the
predominant cause of disease and the primary candidate
for an autogenous vaccine [87–89, 92]. CC1 was pre-
dominantly identified in this production company, and
these CC1/ST1 isolates (cluster e and f) demonstrated
similar gene content (99% similarity) and genotypes but
had different serotypes (serotypes 1/14 vs serotype 2).
These results suggest two sub-populations with differ-
ences in virulence potential and the need for multiple
isolates in a vaccine [93, 94]. On the other hand, the
CC28 isolates (cluster d) demonstrated similar gene con-
tent (92–99% similarity), serotypes, and genotypes, sug-
gesting similar virulence potential, and the selection of a
single isolate for vaccine [11, 13]. As these isolates came
from the same production company, all three isolates
may by recommended for vaccine development. In
addition to the genetic diversity of S. suis isolates, histor-
ical background of a production company should be
considered while selecting isolates. Historical factors
such as prior on-farm identification of S. suis, historic
and current sources of replacement animals, and other
confounding disease factors can further support the in-
clusion of multiple isolates in vaccine development.

Conclusion
In this study, the current distribution of published, in-
cluding classical, VAGs in U.S. isolates was determined,
which indicated that classical VAGs are not sufficient to
differentiate pathogenic and commensal U.S. strains. Of
the 71 published VAGs investigated, the ofs and srtF
genes were shown to be stronger predictors of pathogen-
icity in both a training and a validation set of isolates.
Furthermore, a WGS-based approach was used to deter-
mine the genetic diversity of isolates demonstrating its
use in epidemiological studies and vaccine isolate
selection.
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