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Abstract

Mathematical modelling is nowadays a pivotal tool for infectious diseases studies, completing regular biological
investigations. The rapid growth of computer technology allowed for development of computational tools to
address biological issues that could not be unravelled in the past. The global understanding of viral disease
dynamics requires to account for all interactions at all levels, from within-host to between-herd, to have all the keys
for development of control measures. A literature review was performed to disentangle modelling frameworks
according to their major objectives and methodologies. One hundred and seventeen articles published between
1994 and 2020 were found to meet our inclusion criteria, which were defined to target papers representative of
studies dealing with models of viral infection dynamics in pigs. A first descriptive analysis, using bibliometric
indexes, permitted to identify keywords strongly related to the study scopes. Modelling studies were focused on
particular infectious agents, with a shared objective: to better understand the viral dynamics for appropriate control
measure adaptation. In a second step, selected papers were analysed to disentangle the modelling structures
according to the objectives of the studies. The system representation was highly dependent on the nature of the
pathogens. Enzootic viruses, such as swine influenza or porcine reproductive and respiratory syndrome, were
generally investigated at the herd scale to analyse the impact of husbandry practices and prophylactic measures on
infection dynamics. Epizootic agents (classical swine fever, foot-and-mouth disease or African swine fever viruses)
were mostly studied using spatio-temporal simulation tools, to investigate the efficiency of surveillance and control
protocols, which are predetermined for regulated diseases. A huge effort was made on model parameterization
through the development of specific studies and methodologies insuring the robustness of parameter values to
feed simulation tools.
Integrative modelling frameworks, from within-host to spatio-temporal models, is clearly on the way. This would
allow to capture the complexity of individual biological variabilities and to assess their consequences on the whole
system at the population level. This would offer the opportunity to test and evaluate in silico the efficiency of
possible control measures targeting specific epidemiological units, from hosts to herds, either individually or
through their contact networks. Such decision support tools represent a strength for stakeholders to help
mitigating infectious diseases dynamics and limiting economic consequences.
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Introduction
Infectious diseases represent a global threat to
humans, livestock and wildlife animals and plants
with potential cross-species transmission [1, 2]. Miti-
gating infection is therefore a one-health problematic,
which needs to be addressed using all materials in
hands, both in terms of research and resources. When
referring to such problems, one commonly thinks
about biological analysis, i.e. virological and immuno-
logical diagnostics, which are essential for the under-
standing of host-pathogen interactions [3–5].
Epidemiology aims at describing and analysing health
disorders at the population level [6–8]. A specific
branch of epidemiology often referred to synthetic
epidemiology is dedicated to the identification of fac-
tors favouring or impairing infections of hosts, and
how modifying these factors would alter the transmis-
sion process of the infectious agents. The last decades
have seen the emergence of mathematical tools devel-
oped for the treatment of data related to infectious
diseases dynamics [9–11]. Altogether, this toolset of-
fers an analytic power to disentangle the interplay be-
tween virological, immunological and epidemiological
processes through an integrative approach from
within-host to population scales [12].
Swine production represents one third of meat con-

sumption throughout the world, making pig industry
one of the most important agricultural sector [13]. In
this context, infectious diseases affecting pigs may
therefore have dramatic consequences on the food
chain supply. The recent outbreak of African swine
fever (ASF) in China, the first pork meat consumer
country, clearly illustrates the direct and indirect eco-
nomic impact of the disease [14]. Indeed, a loss of
more than 1 Million animals due to 165 declared
ASF outbreaks was recorded throughout the country
[15], inducing a global shift in world pork market
with huge economic consequences. Apart from ASF,
swine industry is also affected by several enzootic
viral diseases, most of which impair the productivity
of herds, being therefore of huge economic import-
ance (e.g. Porcine Reproductive and Respiratory syn-
drome (PRRS), Porcine Circovirus of type 2 (PCV-2)),
and some of which being of public-health importance
due to their zoonotic nature, such as swine influenza
virus (SIV) and hepatitis E virus (HEV). In both cases,
in-depth understanding of infectious diseases dynam-
ics is needed to adopt appropriate solutions to miti-
gate the infectious pressure among the host
population.
The present paper will review the use of mathematical

dynamic modelling addressing viral infectious diseases in
pigs. The aim was to assess how the field is represented
in the literature and to characterize which kind of

modelling choices and approaches are made according
to the objectives.

Methods
A literature search on PubMed and Scopus databases
was performed on March 28, 2020, including articles
with the following terms as keywords, title or abstract
terms: (pig OR swine) AND (virus OR “viral infection”
OR “viral disease”) AND (simulation OR mathematical
OR stochastic OR estimation OR inference) AND (model
OR modeling OR modelling). In the present review, be-
ing dedicated to viral infectious diseases modelling, we
decided to swipe relatively large, to include studies pre-
senting mechanistic formulation of viral spread at differ-
ent scales. This led to the preselection of 907 records
(Pubmed: 458; Scopus: 449) from which 273 were
duplicates.
The titles and abstracts of 634 articles published be-

tween 1994 and 2020 were screened to select articles
presenting dynamic models of viral diseases in domes-
tic pig production system. All mechanistic modelling
approaches representing the transmission of patho-
gens in swine populations were first selected. There-
fore, papers on virological or immunological aspects
were excluded (169 papers), as well as statistical stud-
ies for risk factors analysis, quantitative risk analysis
(98 papers) or models aiming at economic evaluation
of interventions in infected premises (21 papers). Fi-
nally, 147 studies focusing on bacteria or alternative
host species were discarded as well as 82 studies not
considering mathematical approaches (e.g. experimen-
tal infection, in vitro models or field study analysis).
Prisma flow diagram is displayed in Fig. 1. A biblio-
graphic analysis was first performed to have a global
overview of our selection using bibliometric package
from R software [16]. This analysis allowed for disen-
tangling the studies in regards with the modelling
frameworks and objectives.
With these considerations, selected records were split

into four different categories owing to the objectives of
the studies:

(i) Understanding host-pathogen interaction (6
studies),

(ii) Inferring epidemiological parameters (32 studies),
(iii)Assessing infection dynamics and mitigation

measures at herd scale (29 studies),
(iv)Assessing surveillance and control measures at large

geographical scale (50 studies).

For each of these themes, modelling strategies and ob-
jectives will be generally discussed with some concrete
references derived from the literature review.
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Results
Descriptive analysis
Based on the selection process, 117 records finally met
the inclusion criteria (Supplementary Material 1). The
earliest records were published in 1994, and these mod-
elling studies were dedicated to pseudorabies virus, re-
sponsible of Aujeszky’s disease, in the Netherlands and
United-States, respectively [17, 18]. As shown in Fig. 2,
reflecting the evolution of the number of studies per
year, the rise of modelling studies on viral diseases in
pigs occurred in the mid-2000’s, with a prominence of
open access publications in the last 4 years. Veterinary

journals have been mainly targeted (representing about
65% of publications) but five journals with broader
scopes are in the 10 major journal list (Supplementary
Material 2).
This specific research field was mostly treated by

European teams, especially Dutch, French and UK re-
search centers (with 25, 17 and 12 first-author publica-
tions, respectively), along with US teams accounting for
17 publications (Fig. 3).
The frequency of keyword use over time is repre-

sented in Fig. 4. Queried keywords were systematic-
ally retrieved in the selected records, several

Fig. 1 Prisma flow chart of the selection process

Fig. 2 Evolution of scientific production in pig disease modelling per year
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complementary ones were also identified. Apart from
search terms, viral infections of major economic im-
portance were on the top of authors’keywords along
with terms related to modelling objectives. The major
viral diseases affecting pigs being main concerns for
the swine industry are often used as primary key-
words. Classical swine fever (CSF) was on the top of
keywords with a total of 21 occurrences from 1999
[19, 20] to 2014 [21]. PRRS, ASF, FMD, SIV and
HEV figured out in the 15 most used keywords,
reflecting the variety of pathogens targeting pigs. CSF,
FMD or PRRS have been involved in modelling stud-
ies continuously since 1994, while SIV and ASF have
been only investigated recently, after the 2009 swine
influenza pandemic and the emergence and spread of
ASF in Europe respectively. The applied nature of
modelling studies in swine populations is also
highlighted by specific keywords corresponding to the
main objectives of the studies, control of pathogen
being the common purpose of all studies (Fig. 4).

However, control strategies may take different forms
depending on the disease under consideration. Indeed,
two groups of infectious agents can be established
corresponding to epizootic and enzootic diseases and
raising different issues to modellers. Indeed, enzootic
diseases, such as PRRS or SIV, which cause huge eco-
nomic losses for swine producers, raise the question
of their persistence on farms, despite vaccination pro-
grams. Here, the question of within-farm infection dy-
namics is of primary importance along with the
evaluation of alternative, or complementary mitigation
strategies, such as modifications of husbandry prac-
tices. In contrast, the control of epizootic diseases
such as CSF, ASF or FMD, requires evaluating the
between-herd spread, as well as surveillance strategies
to evaluate the capacity and the cost-effectiveness of
the different control measures. Modelling control of
infectious diseases requires an in depth understanding
of the transmission process at all scales, through the
specification of mechanistic relationships, the

Fig. 3 Evolution of scientific production per country in pig viral infection modelling per year (N.Articles: Number of published Articles; TC per
Year: Total Citation count per year)

Fig. 4 Keyword occurrences in time (N.Articles: Number of published Articles; TC per Year: Total Citation count per year). Terms including “Model”
were gathered as well as keywords “Pig” and “Swine”
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identification and the estimation of key parameters, as
the basic reproduction number, to feed simulation
tools.

Comprehensive review of modelling approaches and
objectives
Understanding host-pathogen interaction
The analysis of infection characteristics at the host-scale
may provide important insights on the infection dynamics
at population scale. Indeed, the response to infection may
be highly heterogeneous between hosts impacting the dis-
ease dynamics at population scale. The simplest models
considered the interaction at the cellular scale with the in-
fection of target cells and viral replication and release, and
has been used to evaluate the impact of the FMD infec-
tious dose on within-host viremia kinetics [22]. The other
five studies were dedicated to within-host kinetics of PRRS
virus infection, which induces an immuno-modulation,
potentially favouring co-infections, and is therefore of par-
ticular importance having regard to host-pathogen inter-
actions. Doeschl-Wilson and Galina-Pantoja [23]
presented models of increasing complexity to account spe-
cifically for host immunity. This work allowed building up
an integrative approach to represent the interaction be-
tween viral replication and the immune response, to
further understand the persistence of viremia and
between-host variability of PRRS [24–26].

Inferring transmission parameters (blue highlight in Supp.
Mat. 1)
Mathematical formalisation of biological systems relies on
the identification of state variables and mechanisms govern-
ing between-state transitions. Parameter values play an es-
sential role to feed simulation tools. One may distinguish
two frameworks for parameter estimation. First, the infer-
ence from experimental data: experimental studies offer the
opportunity to analyse in a fully controlled environments
specific characteristics of viral transmission. Different strat-
egies exist for parameters estimation, all relying on relevant
data gathered on the field or experimentally and on pre-
established model structures [27]. Such approach requires a
clear identification of knowledge gaps and the development
of specific experimental designs to obtain accurate data to
fill these gaps [28]. To estimate epidemiological parameters,
data usually consist in the follow-up of infection sequence
of naïve pigs in contact with inoculated ones [29–31].
Twenty-three articles from our selection focused on the
analysis of experimental data. Such analyses were initiated
by De Jong, Bouma and Kimman, with a particular focus
on pseudorabies virus, the transmission of pathogens being
quantified in different contexts depending on the contact
structure between individuals or the immune status of the
host [17, 32, 33]. The methodology was then adapted to dif-
ferent viruses such as PCV-2, FMD or more recently ASF,

for which direct contact with penmates and indirect contact
between animals housed in neighbouring pens are the main
transmission routes [28, 34, 35]. The inference framework
was also extended to account for alternative transmission
routes, using specific data related to the viral load present
in the air for SIV or in the environment (HEV) [29, 36]. For
all these approaches on parameter inference in an experi-
mental context, the underlying model is a stochastic
Susceptible-Infectious-Recovered model where the infec-
tion pressure – or force of infection (FoI) – exerted on
naïve animals is proportional to the prevalence of infected
pigs in the population. The proportionality factor, denoted
β, represents the transmission rate, i.e. the average number
of new cases produced by one infectious animal per time
unit [9]. This parameter, along with the duration of the in-
fectious period, are the key components for the evaluation
of the basic reproduction number (R0). Parameter estima-
tions are usually based on likelihood approaches: the par-
ameter space is scanned to find the optimal values that
maximize the probability of observing the whole dataset
given the model structure. Deterministic approaches, using
minimization algorithms, were first used, but Bayesian
frameworks are more and more present in the literature to
unravel unobserved processes [37–39].
These Bayesian approaches are also used for parameter

estimation from observational data [37, 40]. The rise of
approximate Bayesian computation methods provides new
toolsets for parameter inference [41]. This method con-
sists in the definition of a metric to measure the adequacy
of the model outcomes with observed data. Simulations
are then performed with parameter set drawn from prior
distributions. The parameter set are accepted and stored if
the model outcomes are close enough to the actual data,
based on the predefined metric. The selected parameter
values define the posterior distribution for the parameter
set. Guinat et al. [42] used this method to estimate epi-
demiological parameters from ASF mortality data in nine
pig farms in Russian Federation. With R0 ranging from 4.4
to 17.3, this study highlighted farm specific spreading pat-
terns, which were likely related to husbandry and biose-
curity farm specific measures.
Parameters are essential components for model devel-

opment and analysis. Their roles and values may modify
in a critical way the behaviour of the outcome variables.
Insuring the robustness of parameter values allows for
stronger analysis of external factors influencing the in-
fection dynamics at population scale.

Assessing infection dynamics and mitigation measures at
herd scale (yellow highlight in Supp. Mat. 1)
Twenty-nine records were dedicated to dynamic models
of viral infection transmission at the herd level with a
similar goal: representing the infectious process in
regards with epidemiological knowledge to test strategies
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for mitigating the viral spread [43–45]. These models
particularly focused on enzootic pathogens, i.e. PCV2,
SIV, PRRS gathering 17 articles. Population models cap-
turing the demographic processes in swine herds are
therefore coupled with specific epidemiological models
representing the infection history for the pathogen under
study. For pigs reared in groups of relatively small sizes,
stochastic frameworks have been privileged [43, 46–49],
although deterministic approaches based on ordinary
differential equations were also developed. The latter
were either theoretical models with in depth mathemat-
ical analysis, providing insight into the model behaviour
according to epidemiological assumptions or parameter
values [50–53], or applied models with an accurate rep-
resentation of the farm systems [54–56]. For illustrative
purpose, the issue of on-farm persistence of SIV repre-
sent a quarter of the selected articles. The set of com-
panion papers by Reynolds et al. [56] and Etbaigha et al.
[54] dealt with the spread of influenza virus in breeding
and farrow-to-finish pig herds using deterministic mod-
elling frameworks. The herd structure was described in
details accounting for animal movements between differ-
ent barns. The authors showed how easily the virus be-
came endemic once introduced in a free herd. Indeed
the frequency of piglet birth induced a regular inflow of
susceptible individuals allowing for viral persistence.
Only homologous vaccination – assuming total vaccine-
induced protection – strategy was able to mitigate the
infection. However, such level of protection is entirely
theoretical and several factors may impair the develop-
ment of the immune response. (e.g. maternally derived
antibodies (MDA)). Stochastic models were also devel-
oped to address the influenza issue. Pitzer et al. [57]
represented three types of herds, i.e. farrow-to-finish,
wean-to-finish, and finisher farms. The herds were rep-
resented with barns housing pigs of similar physiological
statuses and assuming specific contact rates between
these barns to assess the within-herd persistence of SIV
according to herd size. A critical herd size (CHS) of
3000 individuals was evidenced for SIV persistence with
assumed R0 values between 1.5 and 2.5. However, ex-
perimental studies revealed much more effective trans-
mission with R0 values ranging from 10.4 to 14.8 which
would lower the estimated CHS. Cador et al. [58, 59]
identified MDA as playing a major role in the persist-
ence of SIV on farm. A stochastic model was developed
considering batches as main epidemiological units, ac-
counting specifically for the relationship between the
sows and their litters through delivery of maternally de-
rived immunity. The partial protection conferred by this
passively acquired immunity was found to slow down
the infectious process in young piglets but extended the
infectious process at the batch level, favouring between
batch transmission. This modelling framework was

further extended to represent the spread of two antigeni-
cally distant SIV subtypes. Throughout the simulation
process, concomitant infections by the two subtypes rep-
resented 16% of infection events, potentially inducing a
risk of reassortment. The evaluation of different control
measures showed that vaccination poorly managed to re-
duce SIV transmission, confirming previous results from
other studies.
The study of some pathogens may require considering

thinner epidemiological scale with the use of agent-based
models. Such approach allows for the inclusion of individ-
ual variability, which may play a role in the infectious
process at the population level. This was especially the
case for HEV due to the evidence of transmission en-
hancement in pigs co-infected with immune-modulating
viruses (IMV; e.g. PRRS). Salines et al. [60] analyzed the
spread of HEV in farrow-to-finish pig farms through the
development of an agent-based framework describing the
co-circulation of HEV along with an immune-modulating
virus. Such approach allowed for the analysis of modifica-
tions of husbandry practices acting on individual animals,
but having a more general impact on the course of infec-
tion (e.g. cross-fostering, pig mingling in pens) [43]. A
higher HEV persistence probability was evidenced in the
presence of IMV, as well as in herds managed with inten-
sive batch-rearing systems (20 batches) for which the birth
of susceptible individuals is more frequent. The herd
structure and husbandry practices, such as cross-fostering
and piglet mingling, were also highlighted as important
factors for HEV management.
Within-herd models are also developed in view of sur-

veillance evaluation purposes, especially for notifiable dis-
eases such as CSF or ASF. Backer et al. [47] evaluated the
effectiveness of mortality-based detection measures of
CSF applied in Netherlands in 2010 and found that it was
strongly dependent on the physiological states of the ani-
mals. The high natural mortality rate (apart from CSF) in
piglets impaired the detection process, as was the case in
breeding animals due to low CSF-associated mortality.
The protocol was nevertheless effective in fattening units
where CSF-mortality could be disentangled from natural
death, shortening the detection delay from 2 days. Costard
et al. [61] integrated data on farmer’s behaviours to a
within-herd ASF transmission model to assess their risk
on virus spread due to release of infected animals. This
study highlighted the importance of backyard and small-
size herds and suggested those as potential target for sur-
veillance purpose since they may deliver infected animals
through their trade contact network.

Assessing surveillance and control measures at large
geographical scale (Orange highlight in Supp. Mat. 1)
Based on the selection process, between-herd infection
spread was assessed in 50 research studies, along with
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evaluation of surveillance and control measures. The
earliest model focused on pseudorabies transmission be-
tween herds, showing the importance of Aujeszky dis-
ease in the 90’s and the need for modelling studies to
evaluate the feasibility and efficacy of strategies for its
eradication in several European countries [18]. Buijtels
et al. [62] built a model considering the herd as the epi-
demiological unit and used a transition matrix including
24 heath states to analyse the impact of vaccination
strategies. Van Nes et al. [63] developed a model consid-
ering both within- and between-herds transmission, in
order to analyse the impact of control measures at farm-
level and the infectious dynamics at larger scale.
In early 2000’s, a particular focus was made on foot-

and-mouth disease due to a large outbreak in the UK.
Fifteen studies focused on FMD considered multispecies
models including cattle, sheep and pig herds. As such,
pigs were considered in these models as potential hosts
for FMD infection, but were not the target of the studies.
Although pigs played a minor role in 2001 UK epidemics
[64, 65], the role of swine holding was expected to be
much higher in Denmark or Netherlands, clearly extend-
ing the outbreak persistence [65, 66]. These studies first
aimed at unravelling the roles of the different transmis-
sion routes on between-farm transmission, such as ani-
mal movements or local spread through airborne route
[67–69]. Control measures, consisting in ring-
vaccination or ring-culling, could then be implemented
in the models to evaluate their efficiency on the final size
of the epidemics and the outbreak duration. Large radius
ring-vaccination (> 10 km round from infected herds)
was found to be relatively efficient to limit the outbreak
size compared with ring-culling strategies [69–71].
About 15% of the between-herd transmission models

focused on CSF (18 papers), a regulated disease, with
similar objectives as the ones applied to FMD. Modelling
frameworks could be shared for the two problematics
[68, 72]. However, conversely to FMD, CSF is specific to
swine, and multi-scale modelling was therefore more fre-
quent in this case, representing explicitly the on-farm
dynamics of infection [21, 73, 74]. Backer et al. [75] de-
veloped such a framework combining the within-herd
transmission, considering mechanistic transmission be-
tween penmates and neighbouring pens, and the
between-herd transmission, using distance kernel trans-
mission from neighbouring herds. This framework
allowed the evaluation of control strategies consisting in
ring-culling or ring-vaccination from 1 to 5 km radius.
Two km-ring vaccination was evaluated as efficient as
ring-culling. However, vaccination would induce a
higher number of undetected epidemics, and a specific
end-screening protocol, targeting vaccinated herds,
would be necessary. The authors further studied the im-
pact of additional administration of antivirals in sows

[76]. This treatment was found to improve significantly
the control measures previously tested, showing the im-
portance of the within-herd process representation, in-
cluding breeding and growing pigs, to go deeper in the
representation of detailed control strategies.
Generic modelling frameworks were also developed in

view of homogenization and reproducibility of the meth-
odology used for between-herd models. Four major
frameworks were used to model pig viral infections at
large geographic scales, namely: InterSpread [ISP] [77–
79], North America Animal Diseases Simulation Model
[NAADSM] [80–83], Danish Technical University -
Davis Animal Disease Model [DTU-DADS] [84, 85], and
Between-Farm-Animal Spatial Transmission [Be-FAST]
[21, 86, 87]. All models are fed with herd characteristics
(farm types, sizes and locations), and account for direct,
indirect, airborne and environmental transmission
routes. Boklund et al. used ISP framework to evaluated
nine control strategies towards CSF in Denmark based
on their effectiveness in reducing disease burden and in-
fection durations. The NAADSM framework was used
to evaluate the consequences of the introduction of a
highly virulent strain of Porcine Epidemic Diarrhoea
(PED) virus in a densely populated area in France [82].
The high responsiveness when the first detection occurs,
with movement restriction and stamping out of infected
herds within 10 days, appeared essential for limiting the
infection spread. This framework was also used to assess
the spread conditions of PRRS virus in Canada,
highlighting the role of indirect contacts through truck
sharing, and thus the importance of strict biosecurity
measures for mitigating the transmission process [83].
Be-FAST and DTU-DADS model account explicitly for
within-herd spread modules, assuming homogeneous
mixing, to assess the overall infectious pressure exerted
on susceptible herds, through local transmission (e.g.
airborne) or trade exchanges. They also integrate an eco-
nomic module to evaluate the cost-effectiveness of inter-
vention strategies. Recently Halasa et al. published a set
of papers describing the consequences of introduction of
ASF in Denmark and assessed the efficacy of control
measures using the DTU-DADS modelling framework
[85, 88, 89]. The Be-FAST framework was used to study
the transmission patterns of ASF in Sardinia, the only
European region where the virus became endemic after
its introduction in 1978 [87]. The role of unregistered
domestic pigs and wild boars was clearly highlighted as a
key component for ASF persistence on the island.

Discussion
The present paper provides an overview of mathematical
models applied to viral infections in pig populations.
With a broad search algorithm, more than 100 publica-
tion records meeting the selection criteria were
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identified. The analysis of authors’ keywords revealed
common scopes: identification of key parameters, evalu-
ation and control of disease spread at herd scales, and
modelling spread pattern at large scale to evaluate con-
trol measures for regulated diseases.
Swine production is an organized system from within

farm, where pigs are housed according to strict prede-
fined husbandry practices (all-in-all-out flow of animals,
batches of animals of similar physiological statuses,
prophylaxis measures), to commercial trade between
production sites. These characteristics lead to different
contact structures depending on the scale we’re actually
interested in, which were already identified as potential
weakness points in regards with pathogen spread and
persistence [27, 43, 90–92].
Understanding viral infection dynamics in pig herds

has been mainly based on observational and experimen-
tal studies describing real phenomenons in the field or
evaluating assumptions in a controlled way in experi-
mental settings. If several bias and confoundings can be
encountered in observational studies, extrapolation of
experimental findings to the real life is often challenging.
Modelling studies can overcome those drawbacks by
putting together all the information coming from differ-
ent sources in a comprehensive way to represent mech-
anistically the biological events.
Within-host models are broadly used for human infec-

tious agents, such as human immunodeficiency virus or
influenza [93–95], but mathematical modelling of the
host-pathogen interactions represents only six records in
our selection of modelling studies dealing with pig dis-
eases. Recent studies on SIV and PRSS revealed an im-
pairment of the immune response when challenging
piglets having maternally derived antibodies [96, 97].
These impairments were shown to be a key factor
favouring the persistence of SIV on farm [59] and an
additional source of host heterogeneity in regard to
PRRS virus [96]. The kinetics of MDA, and related neu-
tralizing antibodies, could therefore be a key component
to understand the vaccination efficacy in the field.
Immuno-epidemiological models, combining within-host
immunological processes with epidemiological models at
population scale, could help optimizing vaccination
strategies.
The role of within-herd structure was broadly studied

for enzootic agents [43, 56, 98], merging different
within- and between-herds infection dynamics frame-
works, have been used in the last decade (e.g. NAADSM,
InterSpread, DTU-DADS or Be-FAST), mostly to study
the spread of regulated diseases. A homogeneous mixing
assumption is generally used to represent within-herd
infection dynamics coupled with between-herd transmis-
sion module [43, 56, 98], but Kinsley et al. showed that
the incorporation of accurate population dynamics in

herds might shed new light on the actual infectious
process [99]. A recent study on HEV spread integrated
the compartment structure in pig herds in the SimInf
framework [100], a modelling framework originally de-
veloped to study VTEC-O157 spread among cattle herds
in Sweden [101]. Although more complex; this model
accounted for realistic representation of the population
demographics, together with the commercial network
between production sites based on batch-rearing system.
These examples illustrate the need of coupling models
across scales. All scales are strongly related and acting
on one link in the chain can modify the whole system,
with beneficial or detrimental effects.
Halasa et al. [102] compared the outcomes of the

Interspread and DTU-DADS frameworks using FMD ap-
plication for reference disease, showing slight differences
of spread patterns and control policies efficiency. Roche
et al. [103] performed similar work, comparing model-
ling frameworks from five countries, namely Australia,
New Zealand, USA, UK and the Netherlands. Although
the results varied quantitatively, the main conclusions
on the effectiveness of control strategy were robust for
all models, which clearly help to be confident with their
conclusions. In-depth analysis of models’ outcomes,
based on similar assumptions, could certainly help un-
derstanding the impact of the model structures in terms
of predictions.
There is a need at different levels and to different aims

of modelling based information on viral infectious dis-
ease in pigs. The field of application and the representa-
tion structure is somehow correlated with the specific
target/final user. Hence, models on regulated diseases
will be often developed at the between herd scale and
will address questions from policy makers in animal
health [68, 74, 104, 105], whereas models developed for
enzootic diseases are more generally developed on a
herd level scale to answer more applied questions on
disease control rather relevant for veterinarians and
farmers [43, 57, 60]. These models can put together
available data from observational and experimental ori-
gin and can provide estimates of non measurable facts.
A wide range of methodologies have been developed to
this aim, either based on representation of field data by
a dynamic model or by using a simple model describing
the infection dynamics occurring in a controlled experi-
mental setting [29, 35, 42]. These developments have
been used for transmission parameter estimation per se,
but also to evaluate in experimental conditions the im-
pact of a control measure (often vaccination) on virus
transmission [106, 107]. These approaches based on
data-designed models need to be distinguished from
pure model development of complex structured popula-
tion in which a pathogen or a combination of pathogens
is spreading. This latter strategy has been often
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developed in porcine health management to understand
infection dynamics in a comprehensive way by filling the
gap of unobserved phenomenon (by observational or ex-
perimental studies) [48, 49, 60]. Hence the objective is
rarely the pure prediction per se with the exception in
specific cases of regulated diseases for the question of
the impact of the pathogen in case of introduction in a
free territory. Those models are rather used to evaluate
assumptions based on in-silico experiments where a
tested scenario is evaluated towards a control one. The
magnitude of the effect is therefore rather expressed
relatively to a baseline than an absolute estimate of the
impact, but is extremely efficient in evaluating ex ante
the impact of control strategies on an epidemics at dif-
ferent scales and potentially incorporate an economical
assessment [62, 78, 85]. The advantage of modelling is
the quasi absence of limits in the diversity and numbers
of combinations of intervention strategies to be evalu-
ated, which would generally be not possible to assess in
real life.
Integrative modelling from within-host to between-

herds virus dynamics is clearly on the way, but model
coupling remains challenging [12, 108]. The rise of com-
puter technology allowed for development of computa-
tional tools to address biological issues that could not be
unravelled in the past, providing decision-support sys-
tem to stakeholders. The emergence of artificial
intelligence in the field of epidemiology may be a key for
unifying multiple paradigms into a single multiscale
framework [109]. The understanding of how control
measures applied at one scale impact the system at up-
and downward scales is essential to have a global over-
view of their efficiencies. The era of big data offers tre-
mendous quantity of information on diseases spread
throughout the world, requiring the development of spe-
cific methods for their analysis. One may easily under-
stand the cooperative game that is currently played,
gathering interdisciplinary research towards the same
goal: a better understanding of infectious diseases dy-
namics for efficient control policies.
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